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ABSTRACT

The shrouded turbine bucket natural frequencies and associated resonaut shaft

speeds for the M-1 Liquid Oxygen Turbopump are presented in this report_ Both. _laly_

tical and experimental analysis are discussed and correlated.

Using the experimental findings, the operating range of 3500 rpm to 4000 rp_

was investigated for reasonant points° Analysis showed that the first-stage blad,

pacR_ge could develop a secondary resonant problem as a result of its second mode of

tangential vibration being excited by the second harmonic of the upstream 43 nozzle

blade stimulus° No resonant problems are expected for the second-stage blade

packages.
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I. Si_ARY

The analytical and experimental determination of the natural frequencies of the
turbine blades/packages was completed for the first-stage and second-stage rotors of

the two stage turbine design of the oxidizer turbopump for the M-1 Engine. The cor_

relation reveals quantitive agreement between measured and predicted frequencies for

the range extending up to iO,000 CpSo In addition, mode shape measurements provide

qualitative identification of the predicted shapes associated with these frequencies°

Using the natural frequency data for the various blade package combinations

the possibility of developing blade operating resonances was studied. Some resonances
were found in the operating range. They consisted of the higher harmonics of blade

passing stimulus coinciding with higher mode natural frequencies. These resonances

are sharp, which means that the stimulus must be very near the natural frequency to
excite the blades to any appreciable amplitude of vibration. However9 the condition

of narrow resonant response does not entirely eliminate resonances as a potential

problem.

II o INTRODUCTION

The purpose of this analysis was to study the possibility of developing reson=

anees of the Model II oxidizer turbine blades packages at various shaft speeds° The

natural frequencies of the blades must be known to predict these resonance points.

Resonance exits when the fundamental or higher harmonic frequency of the exciting

force coincides with a natural frequency of the blade.

Natural frequencies are evaluated analytically by means of a numerical proced=

ure that performs a detailed analysis of a shrouded group of blades. All of the

natural frequencies and associated mode shapes (tangential_]_ axial, and torsional)
which fall in any specified frequency range can be ascertained°

For purposes of correlation with the analysis, the spectrum of natural fre=

quencies for the first-stage and second-stage turbine rotors was determined experi=

mentally in the range of 50 cps to iO,000 cps. Frequencies and qualitative mode

shapes were evaluated for the four-blade and five=blade groups in each rotor stage.
The turbine stator was not tested.

III o VIBRATION ANALYSIS

A o DESCRIPTION OF THE TURBINE SYST_4

1. Actual Turbine Blade Configuration

The Model II Oxidizer Turbopump Assembly turbine system consists

of_ a first-stage rotor blade, P/N 286528; a stator blade, P/N 286545a and a second_

stage rotor blade9 P/N 286536° The turbine system layout is shown in Figu_ No. _o_
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Stator P/N 286545

97 BladesNozzle . (5 & 6 Blade Package)

/- _woo_ . /_ __ou_
Shroud /--- P/N 286536

(4 & 5 Blade Package)

/._/ '_ \ /- /

• I I \_ \\ ...11

Turbine

_/N__8_53_ _ -_b _
98 Blades ,

(h & 5 Blade package)

Rotor

Figure No. 1

Model II Oxidizer Turbopump Assembly Turbine Blade Set-Up
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The Model _!i Oxidizer Turbopump Assembly first=stage rotor blade

consists of 98 blades banded together in groups of four and five blades_ The blades9

which are made of Inconel 718 material are interconnected by a shroud, which is also

made of Inconel 718. A detail of the blade and shroud configur_tion of the first=

stage rotor blade is shown in Figure No. 2e The rotor blades are fixed to the hub and

shroud by welding and brazingo Note that the blade section at the h_b is reduced at

the trailing edge.

The first-stage rotor blade length varies from 3.52_ino at the

leading edge to 3o88_ino at the trailing edge° The shroud is canted at an angle of

six-degrees, fifteen_minutes. The turbine blade pitch at a mean diameter of 33oO0=in_

is o997=ino and at the shroud, the pitch is lo074_in.

The Model II Oxidizer Turbopump Assembly stator blade, consists

of 97 blades shrouded together in groups of five and six blades° Because the stator

blade vibration analysis will not be reported, a detailed description is omitted i_om
this reports

The Model II Oxidizer Turbopump Assembly second-stage rotor blade

(see Figure No° 3)consists of 94 blades banded together by means of a shroud in groups

of four and five blades° The blade geometry of the second-stage rotor is identical to

the first=stage rotor blade° HoWever, the second-stage shroud is slightly shorter

than the first=stage shroud and it is not canted° The blades are fixed at the shroud

and hub by means of welding and brazing° Again, a reduction of section properties
occurs at the hub°

The second-stage blades are longer than the first-stage blades.

They vary in length from 5o5=ino at the leading edge to 5o7-in. at the trailing edge.

The blade pitch at the mean diameter of 32°815=ino is loO16-in, whereas the blade

pitch at the shroud is 1.196_in.

2. Simulated Blade Packa_£ for the Vibration Test

A simulated blade package for the first-stage and second=stage

rotor was manufactured for the vibration tests. The first-stage rotor, P/N 286529_

(Figure No° 4) and the second-stage rotor, P/N 286332, (Figure No. 5) consist of

four-blade and five_blade packages banded together by a shroud. The geometr2 of th_

blade _ end shroud conforms to the Model II specifications°

The blade fixity at the shroud and hub are the same as in the

desi_ of the Model II blades° For the vibration test, the simulated blade package

is mo_uted on a holding fixture (see Figure No. 6)which is then bolted to the MB_
C60 electro=dynamic exciter.

B° LUMPED PARAME_I_R VIBRATION ANALYSIS

!. Method of Analv____________.___si_
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Shroud

3.524 _/ 3.884

/
BLade /

/
. /

/
/

I _

Typical Four-Blade Package

Figure No. 2

First-Stage Turbine Blade, P/N 286531
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Typical Four-Blade Package

Figure No. 3

Second-Stage Turbine Blade, P/N 286536
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Simulated Blade Package

Figure No. 6

Test Set-Up of Simulated Blade Package for Installation on C-60 Exciter
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_e _t_al _equencies of the banded tu_e blades were pre=

_cted utiliz_g two Aerojet-General Corporation computer programs, _ich are for in=

pl_e _dout-of-pl_e _brations ofin-plane struct_es°

ao Ass_ptions

The application of these compeer _yses for the fre-

quency and mode-shape pre_ction for the b_ded _o_ of blades req_res the following

assumptions:

_) The system consists of a series of buckets_ elas=

tically jointed at the tip by a shroud.

(2) The pr_cipal axes of inertia of _l buret cross=

sections are oriented _ the t_gential _d _i_ direction, respectively,

(3) _e center of twist of each_cket cross-section

coincides with the center of _avity of _at cross-section.

(4) The mass _stribution of _e burets c_ be repre=

sentedsufficiently as l_pedmasses.

The l_p parameter approach ass_es _at a mass distribu_

tion c_ be idealized by a system of l_ped masses at a _screte point. The st_c=

t_e to be _alyzed is defied _ a _in system with br_ches, For ex_ple, consider

the following struct_es_

Ma_ System

_d of Main System / k

(Free_d)_,f_(_ ___ f - _ Ist Interio_

_ End of Branch l J i Point

\ \ \ _ , _ Start of Ma_

__ St_i_dB_c_) I System (F_ed Po_t)
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b. Mathematical Model

The computer program analyzes a system by relating the

conditions of state (i.e. Moments, Shear, Axial Forces, Deflections, Rotations, etc.)

at the first interior point to the boundary conditions at the start; then in turn, re_

lating the conditions at the second interior point to the first interior point, which
then relates the second point to the start. This procedure is continued along the

main system until the joint of the first branch is reached. Then, this relating

start-to-interior-points technique is used on the branch until the end of Branch 1
is related to its start. Applying the Branch 1 start boundary conditions at the end_

to-start relationships, the forces at branch and in terms of its displacements are
obtained. This allows the conditions of the main system past the branch to be rela=

ted to the condition before the branch. The procedure is continued until the end of

the main system is related to the last interior point and hence to the start° By

utilizing the known boundary conditions at the start and end, the unknown boundary
conditions can be evaluated. Then, all the interior conditions c_nqbe evaluated by

"re-walking" through the main system and branches.

To facilitate this "walking through" technique, transfer

matrices are utilized to get conditions of one end in terms of the other end° To

illustrate, consider a lumped parameter model broken into bays, a typical bay is shown
below:

©

\ J

/
/
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Let _A}_, be the state vector as point n° Then, an elasti=

city matrix [E] gets the conditions*_of state at Q in terms of _ and the applied
loading between _ and Q o The mass matrix _F] relates _ to _ another elas=

ticity transfer matrix _] gets conditions at _ in terms of _, and the angle

joint transfer matrix IR] gets _ in terms of _ • Hence, from the above proce-
dure

{A_@= [E_IR:! _Zi_ = [E]IR {AJ START

<A}@: - mlzL[;]z

Thus, it follows that for a multiple bay structure, the start to [_ v relationship is_

--pol
After the last bay of the first segment of the main system has been related to the

start, the first branch can be "walked through" to obtain the branch joint transfer

Matrix _B_, thus, crossing over the branch, the state vector becomes,

N-XI+I N 1

Continuing on through to the end of the main system, the final state vector becomes_

<A]-_ND= 1 x (i-l) +i N NR i-I START
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Where_ [B]o = _I3 unity matrix; [B_]i=1 For i> 1 is as defined in Appendix A.

j = number of branches

The state matrix and the transfer matrix derivations are given in Appendix A for in_

plane and out-of-plane loading.

Co Use of Symmetry and Anti-Symmetry Model

When a banded group of blades vibrates in the axial direc_

tion, the mode shapes tend to take on either symmetric or anti-symmetric appearance.

Thus, the frequencies for the modes can be computed by considering only one-half of a

banded group of blades. By using the method of symmetry (ioeo, utilizing appropriate

boundary conditions at the point of symmetry), the mode shape of the entire banded

group can be determined° The above procedure also applies to the blades that behave

in an anti-symmetric manner_ This procedure was used only in the axial vibration

analysis_ however, it can also be used for tangential vibration analysis.

A schematic with the boundary conditions for a symmetric

and anti-symmetric case is shown below:

V=O M=O

-o
_4=0 Y=O

I T , I -

Symmetry Anti-Symmetry

The anti-symmetry analysis yields the frequencies for the

odd number modes, while the symmetry method is used to evaluate the even number modes.

The use of the symmetry and anti-symmetry method of analy-

sis for axial vibration is limited to a banded group having an even number of blades.

Thus, for the vibration analysis of the first-stage and second-stage rotor blades, only
the four=bladed group was determined° However, this method is more accurate than when

the total system is considered because only half as many computations are required.

2. Model Representation

A lump parameter model for the Model II Oxidizer Turbopump Assem®

bly turbine bucket blades and shroud attachment are shown in Figure No. 7 for the

Page 12
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Shroud

Wm

I_ L3L 3 L h /.-- Boundary Condition

() ) () ) (

C) () . ) C) C)

"_ () C) _L 2 (Typ) C)) f-)() () () C)
Blade

i _.:) ( _ _ .I _-- ¥B ( ) (:)C) (___ () (J

Tangential

Blade Blade Properties Shroud Properties

L1 (in) L2 (in) WB/in (LB/i n) L_(in) L4 (in) Ws_in (LB/in)

First Stage .04 .207 .0674 .25 .54 .1043
q,L,

Second Stage .04 .315 .0674 .25 .35 .1043

L = bay length

W = we i ght

Figure Noo 7

Lump Parameter Model
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tangential and axial vibration analysis. This model represents a four-blade package°
The model for the axial vibration utilizes the symmetry and anti-symmetry method of

approacho

The lump parameters between the first-stage and second-stage

blades differs not only in the shroud properties but also in the length of the blades

and the shroud pitch. The length of bays and the blade masses for th* computer pro-

gram are tabulated in Figure No. 7 for both the first-stage and second-stage blades.

The turbine bucket section properties for both first-stage and

second-stage are identical. The area and moment of inertia of the bucket sections
are shown in Table I. The section properties at the bucket fixity to the hub have

been reduced slightly to simulate the actual section. In essence, this reduction
lessens the bucket stiffness at the hub°

The section properties of the shroud for the first®stage and

second-stage blades are shown in Table IIo The shroud configuration used in the com-

puter program analysis is the actual geometry of the simulated test blade package_

The section properties include the area, moment of inertias, shear deflection constant

k, and torsional constant K_

3. Numerical Results

a. Mode Shapes and Frequencies

The mode shapes and frequencies for the Model II Oxidizer

Turbopump Assembly first-stage and second-stage rotor blades have been determined by
utilizing the matrix transfer technique and the lump parameter models (see Figure

No° 7)° Further discussion of the tangential, axial, and torsional modes follow.

(1) Tangential Mode

The mode shapes and frequencies for the tangential

vibration analysis were predicted for the first-stage and second-stage rotor blades°
These are summarized in Table III for the four-blade package and Table IV for the

fire-blade package°

The results show that between the first and second

taugential modes, there is a group of frequencies which are called the fundamental

fixed_supported modes. These modes, which are the first, second, and third modes,
are characterized by large vibration amplitudes near the bucket pitch line but very
little motion at the tips_

The numerical results also indicate that the number

of discrete frequencies in the tangential fixed-supported mode group is always one less
than the number of buckets banded together. For example, for a four®blade group there

are three discrete frequencies. The vibration patterns of the buckets, as observed
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TABLE II

FIRST-STAGE AND SECOND-STAGE SHROUD PROPERTIES

A .298 in° 2 i ..... .285 in. 2

I

Ix,x, i .o0166 in.4 i .0O0864 in.4

J

.o5585in.4
_v i .o636_n.4

.0861 in. .O87 in.

Ctang = kt/A 2"O!/in.2 5-01/in.2

Caxial = ka/A 4.63/in.2 4,80/in.2

K (Torsional .00589 i .00589
constant) !

L__.................................i.....

C = shear deflection coefficient
k = shear deflection constant
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TABI_{ ili

CALCULATED TANGENTIAL AND AXIAL NATURAL FREQUENCIES OF FIRST-STAGE TURBI_E

T
1 Four-Bucket Group Five-Bucket Group

Tangential Axial IMode _.ode

!Tangential Mode ShaDe Axial Mode Shape Tangential Mode Shape
iJ
i " J

First Cantilever _. 14,_! _ _ L [ 1433

I i 2099I
I

]irst 24.09

,_ A_ial [

roup il
h 4632

t '
First

Fixed- o:,_, ___ 678_
Supported
Group

Tos_ JC4_ e_ _W4_

Second 6969 {_Cantilever

Second 1
Cantilever 79r_9 q _ C_}]_



TABLE IV

CALCULATED TANGENTIAL AND AXIAL NATURAL FREQUENCIES OF SECOND-STAGE TURBINE

Four-Bucket Group Five-Bucket Group
Tangential Axial

Mode Mode
Tangential Mode Shape Axial Mode Shape Tangential Mode Shape

First Cantilever 725 __ 733

First
Axial

Group 1525 _L '
t

O'q

oo 2520 - - 3510

First 291o _ 3_ll
Fixed-

Supported

Group 3005 _ 4110 __

,I 4310

Second Cantilever 3820 ("-"[_

First 4157
Axial

Group_ 4257

Second Cantilever i 5192
i J

t



from the mode shapes (see Tables III and IV) take on "odd" or "even" symmetry

appearance depending upon whether corresponding buckets in each half of the group

are in-phase or out-of-phaseo

(2) Axial Mode

The mode shapes and frequencies for the axial

vibration analysis were predicted by using the lump parameter model shown in Figure

Noo 7. This model utilizes boundary conditions consistent with the symmetric and s_ti=

symmetric modes° The numerical results of the frequencies for the axial vibration of

the first-stage and second-stage rotor blades as well as their respective mode shape_

are shown in Table IV for the four®blade package°

The first axial group modes are characterized by
the progressive pattern of nodes in the shroud band. There are no nodes along the

bucket length° In the lowest or first mode, there are no nodes along the shroud band°

All of the buckets in the first axial group vibrate in the axial direction and all of
their motions are in phase. The second axial mode has one node along the band, the

third has two nodes, and so forth° The highest frequency mode always has nodes _u the
shroud between each bucket in the banded group and thus, the number of nodes along the

band is equal to one less than the number of buckets banded together° Therefore, the

total number of modes in this axial group is always equal to the number of buckets

banded together°

(3) Torsional Mode

For shrouded blades pure torsional modes do not

exist. Moreover, the coupled torsional_bending natural frequencies are as predicted
for the axial modes of vibration°

C. VIBRATION TESTS OF FIRST AND SECOND STAGE TURBINE ROTOR BLADES

lo Test Set-Up and Procedure

The vibration tests utilizes the simulated blade package (see

Section III, A) to determine the various resonant frequencies and corresponding mode

shapes. The first=stage rotor, P/N 286529, and second-stage rotor, P/N 286532, each

in turn, was mounted in a holding fixture and bolted to the MB_C60 electro=dynamics

_citer (see Figure No. 6). The simulated blade packages were excited in both the

axial and tangential directions from lOO cps to 9000 cps.

The resonant frequencies were determined by the phase cha_ge

between the accelerometer output and the excitation input as observed on an osci_lo_

scope. An Endevco accelerometer was used to pick up the output signal on the blades°

The nodal patterns of the banded blade were determined by using

the salt pa_tern technique and the damping_undamping technique.
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2o Test Results

The mode shapes and resonant frequencies from the vibration tests

of the first-stage and second-stage turbine blades are summarized in Tables V and VI.

For the tangential modes, the first cantilever, first fixed_supported, and second
cantilever modes were obtained for the firstMstage and second-stage turbine blades.

For the axial modes, only the first axial group was measured from the vibration test.

The frequency values in the first fixed_supported group for both

turbine blades were quite close together, whereas in the first axial group, the fre_

quency varied widely, yet they are lower than the first fixed-supported group.

The test results also indicated that the frequencies of the four-

blade and fire-blade packages in the higher modes are similar with the exception that

the fire-blade package has one more mode than the four-blade package° Thus, use of

the four-blade package data is sufficient for evaluation of resonance.

3o Correlation of Test Frequencies with Analytical Predictions

A comparison between calculated and observed frequencies of

banded bucket groups is presented in Table VII for the four®blade and fire-blade

banded groups of the first-stage and secondmstage rotor blades°

In the tangential mode, comparison of frequencies is given for

the four-blade and fire-blade groups, whereas in the axial direction only frequencies
from the four-blade banded group were measured. The results, which are very encourag_

ing, indicate that fairly accurate predictions of resonance conditions can be accom_

plished through the use of these digital computer programs. Therefore, these computer

programs can aid in the future design efforts of banded buckets.

The discrepancies between the test values and the computer pre_

dictions in the higher modes could largely be the result of the blade orientation_

that is, the shroud is actually of such a nature as to couple, although weakly, the
tangential and axial modes of vibration° Also, the treatment of the shroud stiffness

and "effective" length becomes more significant in the prediction of blade frequencies

in the higher harmonics. In the analytical prediction analyses, the effective length

influence was accounted for by distributing the shroud stiffness as shown in Figure
No. 8°

D. RESONANT FREQUENCY DETERMINATION
i

lo Excitation Frequencies

a. Description of Primary Stimulus for Each Stage

The natural frequencies of the turbine blades are excited

by the action of periodic stimulus which, in this case, is a gas flowing through a

Page 20



TABLE V

OB_._ERVE_D TAN_G_EN_TIA_L_._AN_DAXIAL NATURA_L_FREQUENCIES OF FIRST-STAGE TURBINE
1

Four-Bucket Group Five-Bucket Group
Tangent ial Axial

i Hode Axial Mode Tangential Mode Axial Mode

Mode Mode Tap_ential Shape Shape Shape Shape

First

Cantilever 1Z20 / _ !/ / 1335

455o 6590

i I

6510
• I
po

d_ 6635 _[VV( 556o )_I_(

First 6820 .__ 6220 _iFixed-

Supported i

Group 692O I )_CT_ 6410 ) (I)(
! i I

Ir 6655[(( I I>
Second

Cantilever , 7005 _--_--{ 7000 (-C_

First 6i_9 7980
Axial

Group > 9000



TABLE VI

OBSFAVED TANGENTIAL AND AXIAL NATURAL FREQUENCIES OF SECOND-STAGE TURBINE

Four-Blade Package Five-Blade Package

Tangential Axial

Mode Mode tangential blod< i Axial Mode Mode Axial Mode
Shape i Shape _angential Shape Shape

First !

Cantilever 725 { _ f _ [ 800 { _ _ (7

_i. I_ I _5 _ 96o LD_

First ' _Axial 1250 ii 50
Group

° I 2910 2920

ii 2520 ) )( (_ 25__o)_1( (

First 29> ( ) )( 29> (--)I)(
Fixed-

Supported

Group 3OO5 rUT] 295O ) _. I _ _,

,, 31oo IL___L_L__
First

Cantilever 3820 (" (" _" ( 3960

" _ __- 5__oo_First 5050
Axial

Group I 8300



TABLE VII

COMPARISON OF OBSERVED AND CALCULATED TANGENTIAL AND AXIAL NATURAL _REQUENCIES

OF FIRST-STAGE AND SECOND-STAGE TURBINE BLADE

4

First-Stage Turbine Blade Second-Stage Turbine Blade

Four-Blade Five-Blade Four-Blade Five-BladeMode

Observed Calculated Observed Calculated Observed Calculated Observed Calculated

First Cantilever 1220 1471 1335 I 1433 725 722 800 733
I .....

First 6635 _514 55_0 i 6460 2520 3337 2510 351089

_ Fixed-
6820 6_0 6220 6784 2910 3541 2910 3711

tO "_
_ Supported
_ Group 6920 7082 6410 _<914 3005 3671 2950 4110
h0

i 6655 7070 31OO 4310

Second Cantilever 7005 7979 8000 3820 4371 3960

1480 2099 1460 975 1086 960

1900 2409 1960 1250 1525 1150
First
Axial 4550 I 4632 6590 2910 4157 l 2920

Group 6540 4840 7950 5050 4257 1 5_00

m 9000 8330
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group of nozzles. The stimulus has a period of time equal to the time required fox_
the bucket to travel a distance of one nozzle pitch. Because the stimulus is non_

sinusoidal, it can also excite the buckets at frequencies that are multiples of the

frequency of passing nozzles°

The frequency of the stimulus may be calculated by

n N_

Frequency = _ , cps

where: n = the harmonic

N = number of nozzle per 360 degrees

= shaft spee_ rpm

Now, by making a plot of frequency,W, (cps), versus shaft speed, (rpm), a series of

lines representing the frequencies of the stimulus for each harmonic can be drawn,

and the slope of these lines is defined as:

Slope Fr_ of Stimulus n N(_O) = n N
= Shaft Speed - _ --_

The primary stimulus for the first-stage turbine blades is the result of gas flowing
from the 43 turbine nozzle blades° The second-stage turbine blades can be excited by

the actions of both the 97 stator blades, which is the primary stimulus_ and the 43

nozzle blades (see Figure Noo 1)o

Plots of the stimulus for the first-stage and second-stage

turbine blades are shown in Figures No° 9 and Noo lOe Resonant points of the turbine

blades (ioeo, the point in which the natural frequency coincides with the frequency of
the stimulus) are determined by the intersection of the horizontal lines representing

the natural frequency of the blades with the stimulus lines° These maps represent

"critical speed" plots for the turbine blades° The horizontal lines would become

curved lines if centrifugal stiffening of the blades is significant_ however, this

effect was determined and found to be negligible.

2_ Tangential and Axial Mode Resonance Points

Critical speed plots for the first-stage and second-stage turbine

rotor blades are given in Figures No° 9 and No° lOo Because the operating range of the

shaft speed is 3500 rpm to 4000 rpm, only the resonance points within the operating

band are of interest. It should be noted that for each case, the stimulus frequency

curves are for the first three harmonics (n = 1,2,3). The amplitudes for the higher _

harmonics should be very small and can be considered negligible° The turbine blade

natural frequencies for the tangential and axial modes are %he measured values (see

Tables VI and VII) of both the four-blade and five_blade groups. The measured
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frequencies have been corrected to the operating condition by the ratio of the

elastic modulus at operating temperature. Thus 9 at a temperature of llOOOF_ the

frequencies are corrected by (,945) x room temperature frequency.

For the first-stage turbine blades, the critical speed plot

(see Figure No. 9) indicates that the second harmonic of the exciting force provided

by the 43 nozzle blades could theoretically excite the second tangential mode of

vibration° The natural frequency for this case is 5270 cps, which corresponds to

the first mode in the fixed-supported group°

The critical speed plot of the second-stage turbine blade

(Figure No. lO) indicates several resonance points within the operating range, par_

ticularly the first harmonic of the secondary stimulus from 43 nozzle blades. The

primary stimulus is provided by the 97 reversing blades. The first harmonic of the
exciting force provided by the nozzle blades could theoretically excite the first

fixed_supported group of the tangential modes and the third mode of the axial vibra-
tions in the five-blade package as well as the similar modes of vibration in the

four-blade package. At a higher frequency9 the third harmonic of the exciting
force from the 43 nozzles could excite the fifth mode (7900 cps) of the axial modes

of vibration in the five®blade package. These higher modes of possible resonance

are not considered critical because they are more difficult to excite and the ex_

citing stimulus magnitude decreases rapidly with the higher harmonics of the forc_

ing frequency.

3_ O_erating Speed Range Potential Vibration Pr0blems

The operating range of the Model II Oxidizer Turbopump Assem-

bly turbine blade is between 3500 rpm and 4000 rpmo Within this operating range,

several resonsmt points occur, particularly with the second-stage turbine blade°

However 9 the excitation force of the second-stage blade has been provided mostly

from the 43 nozzle blades which, in this case_ is not the primary stimulus_ There_

fore 9 the excitation force is not very powerful and hence, a resonance problem is
not expected°

For the first-stage turbine_ the resonant points within the

operating range consist of the second and third harmonic of nozzle passing stimu-

lus exciting the second and sixth modes of tangential vibration° As no fundamen-

tal modes have resonant points in the operating range, the turbine blades can
operate within the range without any significant resonant problems. If a problem

does occur_ it probably will be associated with the second mode resonant point

excited by the second harmonic of nozzle passing stimulus.

IV_ CONCLUSIONS

The analytical and experimental determination of the natural frequencies of

the first-stage and second-stage turbine blades of the Model II Oxidizer Turbopump

Assembly has been fully evaluated. The results from the vibration tests of a
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simulated blade package, as compared with the analytical solution, demonstrate that

the natural frequencies from a shrouded group of blades can be predicted quite well

by the technique presented herein.

Discrepancies between the predicted and test data could possibly be the re-

sult of the principal bending axis of the blade package not being in the same plane

as that of the shroud@ For simplicity, in the computer solution, the p_incipal bend-
ing direction for both the blade and shroud is taken to lie in the same planes

Y

Good correlations were obtained in the lower frequencies for both the fir_t_

stage and second-stage turbine blades. For the higher modes, natural frequencies

of axial vibration predictions tend to be somewhat higher than the test results.

The resonance points of the turbine blades using test results were investigated

in the operating range of 3500 rpm to 4000 rpmo For the first-stage blade package_ a

resonance problem might occur because of the second mode of tangential vibration being
excited by the second harmonic of the 43 nozzle blade stimulus° Moreover, this is not

considered to be a primary resonant problem as it is not definite that sufficient ex®

oitation _oll occur. No resonant problems are expected for the second-stage blade

packages °
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APPENDIX A

NOMENCLATURE





A = Area, in2

C = Shear deflection coefficient, 1/in 2

G = Modulus of Rigidity, lb/in 2

g = Acceleration of gravity, 386 in/sec 2

I = Moment of Inertia, in4

J = Rotary inertia constant, 91bs-sec2-ino

K = Torsional constant

k = Shear deflection coefficient

L = Length of bay element, ino

M = Bending moment_ in_lbs

Q = Torque, in-lbs

T = Axial force, lbs

u = Displacement perpendicular to axis of bay element, in.

V = Shear force, lbs

y = Displacement parallel to axis of bay element, ino

W = Weight of bay element9 lbs

= Pitch angle between bay elements, degrees

= Rotation_ radians

O = Torsional Rotation of axis of bay element, radians

= Frequency, cps

EB_ = Branch Transfer Matrix

_E_ = Elasticity Transfer Matrix

_F_ = Mass Transfer Matrix

ER_ = Joint Transfer Matrix

_2k_ = State Vector

AE = Beam Axial Stiffness Parameter (in2)(lb/in 2)

BG = Torsional Stiffness Parameter, (in4)(lb/in 2)

EI = Beam Stiffness Parameter, (lb/in2)(in 4)

Subscripts

A = axial direction

L = left side of bay element

N = element number

R = right side of bay element

T = tangential direction
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APP_DIX B

VIBRATION ANALYSIS USING

MATRIX TRANSFER METHODS





I. VIBRATION ANALYSIS OF IN-PLANE LOADING OF IN-PLANE STRUCTURES
WITH BRANCHES

The general procedure of the matrix transfer method of analysis is

outlined on pages B-5 through B-8 of this appendix. The detailed derivations

and definitions of the elasticity_ mass_ and branch Joint transfer matrices

are also set forth.

The equations of equilibrium and compatibility for the elasticity

element and lumped masses as well as the Joint transfer equations for in-

plane loading are as follows.

A. ELASTICITY TRANSFER MATRIX

VNp

TNR

MNR
Y
NR

TNL i i_

TNL= TNR; VNL_ VNR; _L = MNR + VNR ° L

MNR _N

YNL _ YNR " _NR LN _' 2 E IN _ _ E IN GN

TNR LN

um_= Um_ + _i N
2

MNR LN VNR LN
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In matrix form_ the elasticity transfer matrix becomes:
i

p i D

T 1 0 0 0 0 0 T

V I 0 1 0 0 0 0 V

M 0 L i 0 0 0 M
4

=. _L3 _ CL) "'_-IL2
Y o _ 1 o -L y

L 0 0 0 1 0 Uu

-L2 -L 0 0 i

NR N ' ._R

or IIA}NL = [E]N{_}N R

Bo MASS TRANSFER MATRIX

w_.u_2

TNL _ KVN YNW
\

Wn _2)

v_L.v_R+ (_Kv+ w__2)._Ng

MNL =MNR - (Ke + J _)YN

Page B-2



In matrix form_

o _ o (-Kv+_w_o_) o o vg

oo .,oo_i 0 0 0 1 0 O.

0 0 0 0 1 0

0 0 0 0 0 1 "

NL

C. JOINT TRANSFER MATRIX

v_R

TNL = TNR cos _'N + VNR sin_" N

l

_L --MNR

YNL = YNR cos _ N + UNR si_n_N

uNL -Y_Rsin_N oo_
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In matrix form:

T cos_ sin_ 0 0 0 0 T

V -sin_ cos_ 0 0 0 0 V

M 0 0 i 0 0 0 M

:
Y 0 0 0 cosS sins 0 Y

U i 0 0 0 -sins cos_ 0 U

o o o o o i ¢

-- j J
NL - N NR

D. BRANCH JOINT TRANSFER MATRIX

Joint ---h

i Main System

A

Starting at Point A "walking" to B with the aid of.the

transfer matrices we get

)] .......
for _ Bays in the b__anch.
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ExpandingEquation(4) give,,

P = i _ + K + Equation(5a)g

_ _2 d27w --21_ �2_ �EquationCSb).

By multlplyi_g Equati_ (Sb) by . we get :
21

-i -1

w = K + . K + d
21 u 21 22 g 21 27

or

UK = _ K . Equation (6)
u 21 21 22 g 21 d27

Substitutimg Equation (7) into Equation (6a) and writing in the partitioned

matrix form, we have:

Expanding Equation (7) gives

' T [ kll k12 kl3 k14 k15 k16 [ k17 _B _

V [ k21 k22 k23 k24 k25 k26 k18 ':

j -" _--" " " [ " " " " % Eq_tton(Ta)
M !I k3! k32 k33 k34 k35 k36 k19 t "_--

.!1

0 0 0 0 " 0 0 [' i .',,'

_ 1 . Qi3!
21. :
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Hence, we now have the forces at Point B in terms of the displacements at B

and the known boundary conditions at Point A. However, these values are with

respect to the sign convention ef the branch; therefore, a change of coordinates

transfer matric is needed. For simplicity, rewriting Equation (7) and

Equation (7a) as

Kll Kl2 Ki3 WB
Equation (8)

1 0 0 1

and multiplying by the appropriate coordinate transfer matrix IGI I yields

-I -i .._i -i /,,,

=_ _ Equation (_

0 I 0 I

cos _ sin _" 0

where: .GI = G2 = -sin_ cos _ 0

0 0 i
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Expanding Equation (9) we have imposed on the main system from the branch

p

r ' - YB_
_.. TB kll kl2 k13 kl4 kl5 kl6 kl7

UB

VB k21 k22 k23 k24 k25 k26 k27

= _, _ Q_ Equation (I0)

MB k31 k32 k33 k34 k35 k36 k37 Q_

I 0 0 0 0 0 0 i i

We are now ready to write down the branch joint transfer matrix. Consider the joint

point of the main system.

..... MiL ViR

VB

The equilibrium equations are_

ViL = ViR + VB; TiL = TiR + TB; MiL = MiR + MB Equation (ll)
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II. VIHRATION ANALYSIS OF OUT-OF-PHASE LOADING OF IN-PLANE
S UC 'U'aESW'ZTH"BPa.WCHES "
,...... , H I H II ..... ' ' ........................ ' .... •

The equatiens of equilibrium,and cempatibility fer the elasticity

element and Imaped masses and the Joint transfer equations fereut-ef-plane

loading are as fellewso

Ae ELASTICITY TRANSFER MATRIX

• . Nr,

Top View
Side View

Q'NL = __.R

QL
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In Matrix Form:

V 1 0 O 0 0 0 V

M L i 0 0 0 0 M

Q 0 o 1 o 0 o Q

L3 CL L2
Y (_ _ ) 2E--Y o i _T, o Y

-L2 I

@ o o _ o o :L O
I , _.. BG

B._ MASSTRANSFERMATRIX _ _? f _-

Top _iew Side View

Page B-L1 1



f

Ho

i I x
,'Z, 0 0 0 0 0 F-_ 0

a0

I>
o o o o o k--' o ,4-4

LH L-I _ L_

IP
II II II H

• o o o o _ o o ,_ _ _ d< ,
• 6g _.:] _ td

0 0 0 i-' 0 0 CD _ ,:6_.
L _ '_ O_1;-I

,CD S

_ .-i

u::l
:z<: d:, _1

,,0 iJ 0 0 Ih) 0 0 _D

d _

i i-_ o o o _i _41 _1 I

f

J



_ o o o o _ _
°_ 0

•,'_ o _
• o .,--i o o o o _

_ -_I 0 0 o_

0 I_ _ 0 0 0

_ m

J _ _ ° _ _ o o o

0 %
o

_ _ "_ _ __ o o o o o•_ " I
,%

-0 II -



D. BRANCH JOINT TRANSFER MATRIX

The branch joint transfer matrix equations for out-

of-plane leading are derived in the same manner as for the in-plane

leading; therefore_ refer te section I, D, page B-4@
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